Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38585721

RESUMO

Specific and highly diverse connectivity between functionally specialized regions of the nervous system is controlled at multiple scales, from anatomically organized connectivity following macroscopic axon tracts to individual axon target-finding and synapse formation. Identifying mechanisms that enable entire subpopulations of related neurons to project their axons with regional specificity within stereotyped tracts to form appropriate long-range connectivity is key to understanding brain development, organization, and function. Here, we investigate how axons of the cerebral cortex form precise connections between the two cortical hemispheres via the corpus callosum. We identify topographic principles of the developing trans-hemispheric callosal tract that emerge through intrinsic guidance executed by growing axons in the corpus callosum within the first postnatal week in mice. Using micro-transplantation of regionally distinct neurons, subtype-specific growth cone purification, subcellular proteomics, and in utero gene manipulation, we investigate guidance mechanisms of transhemispheric axons. We find that adhesion molecule levels instruct tract topography and target field guidance. We propose a model in which transcallosal axons in the developing brain perform a "handshake" that is guided through co-fasciculation with symmetric contralateral axons, resulting in the stereotyped homotopic connectivity between the brain's hemispheres.

2.
Antioxid Redox Signal ; 39(16-18): 1039-1052, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37276181

RESUMO

Significance: Retinal neurons are vulnerable to disease and injury, which can result in neuronal death and degeneration leading to irreversible vision loss. The human retina does not regenerate to replace neurons lost to disease or injury. However, cells within the retina of other animals are capable of regenerating neurons, and homologous cells within the mammalian retina could potentially be prompted to do the same. Activating evolutionarily silenced intrinsic regenerative capacity of the mammalian retina could slow, or even reverse, vision loss, leading to an improved quality of life for millions of people. Recent Advances: During development, neurons in the retina are generated progressively by retinal progenitor cells, with distinct neuron types born over developmental time. Many genes function in this process to specify the identity of newly generated neuron types, and these appropriate states of gene expression inform recent regenerative work. When regeneration is initiated in other vertebrates, including birds and fish, specific signaling pathways control the efficiency of regeneration, and these conserved pathways are likely to be important in mammals as well. Critical Issues: Using insights from development and from other animals, limited regeneration from intrinsic cell types has been demonstrated in the mammalian retina, but it is able only to generate a subset of partially differentiated retinal neuron types. Future Directions: Future studies should aim at increasing the efficiency of regeneration, activating regeneration in a targeted fashion across the retina, and improving the ability to generate specific types of retinal neurons to replace those lost to disease or injury. Antioxid. Redox Signal. 39, 1039-1052.


Assuntos
Qualidade de Vida , Retina , Animais , Humanos , Neurônios , Regeneração/fisiologia , Mamíferos
3.
bioRxiv ; 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36824714

RESUMO

Genetic mosaic analysis, in which mutant cells reside intermingled with wild-type cells, is a powerful experimental approach, but has not been widely used in mice because existing genome-based strategies require complicated and protracted breeding schemes. We have developed an alternative approach termed BEAM (for Binary Expression Aleatory Mosaic) that relies on sparse recombinase activation to generate two genetically distinct, non-overlapping populations of cells for comparative analysis. Following delivery of DNA constructs by transfection or viral transduction, combinatorial recombinase activity generates two distinct populations of cells labeled with either green or red fluorescent protein. Any gene of interest can be mis-expressed or deleted in one population for comparison with intermingled control cells. We have extensively optimized and characterized this system both in vitro and in vivo , and demonstrate its power for investigating cell autonomy, identifying temporally or spatially aberrant phenotypes, revealing changes in cell proliferation or death, and controlling for procedural variability.

4.
Am J Ophthalmol Case Rep ; 26: 101543, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35496760

RESUMO

Purpose: To report three cases of retinoschisis in patients with intermediate to advanced choroideremia. Observations: Three patients were referred for evaluation of retinal detachment in the context of an inherited retinal degenerative disease. In all three cases, patients carried variants in the CHM gene suspected to be pathogenic and exhibited the characteristic findings of choroideremia, including pigment clumping and chorioretinal atrophy with scleral exposure and prominent choroidal vessels. Interestingly, these patients were also found to have areas of typical retinoschisis and cystoid degeneration located in the outer plexiform layer of the mid periphery or macula. Retinoschisis was confirmed by spectral domain optical coherence tomography (SD-OCT). Conclusions/Importance: This paper draws attention to the occurrence of retinoschisis in patients with choroideremia. OCT can be used to confirm the presence of retinoschisis rather than retinal detachment, as the clinical exam findings that distinguish the two conditions are not helpful in the setting of advanced chorioretinal atrophy. Although it remains unclear whether patients with choroideremia as a group are at increased risk of retinoschisis, it is possible that abnormal vesicular traffic in the RPE and photoreceptors could contribute to abnormalities in cell adhesion and the extracellular matrix. As gene therapy by subretinal injection of adeno-associated virus becomes the standard of care to slow down or arrest retinal degeneration in choroideremia, it will be critical to carefully screen these patients for retinoschisis prior to surgical intervention and to incorporate any such findings into surgical planning.

5.
Cell Rep ; 37(3): 109843, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34686320

RESUMO

For precise motor control, distinct subpopulations of corticospinal neurons (CSN) must extend axons to distinct spinal segments, from proximal targets in the brainstem and cervical cord to distal targets in thoracic and lumbar spinal segments. We find that developing CSN subpopulations exhibit striking axon targeting specificity in spinal white matter, which establishes the foundation for durable specificity of adult corticospinal circuitry. Employing developmental retrograde and anterograde labeling, and their distinct neocortical locations, we purified developing CSN subpopulations using fluorescence-activated cell sorting to identify genes differentially expressed between bulbar-cervical and thoracolumbar-projecting CSN subpopulations at critical developmental times. These segmentally distinct CSN subpopulations are molecularly distinct from the earliest stages of axon extension, enabling prospective identification even before eventual axon targeting decisions are evident in the spinal cord. This molecular delineation extends beyond simple spatial separation of these subpopulations in the cortex. Together, these results identify candidate molecular controls over segmentally specific corticospinal axon projection targeting.


Assuntos
Axônios/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Crescimento Neuronal , Tratos Piramidais/metabolismo , Córtex Sensório-Motor/metabolismo , Substância Branca/metabolismo , Fatores Etários , Animais , Receptores de Proteínas Morfogenéticas Ósseas/genética , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Separação Celular , Feminino , Citometria de Fluxo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Técnicas de Rastreamento Neuroanatômico , Tratos Piramidais/crescimento & desenvolvimento , Córtex Sensório-Motor/crescimento & desenvolvimento , Transcrição Gênica , Substância Branca/crescimento & desenvolvimento
6.
Blood ; 128(19): 2338-2342, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27707736

RESUMO

BCL11A, a repressor of human fetal (γ-)globin expression, is required for immune and hematopoietic stem cell functions and brain development. Regulatory sequences within the gene, which are subject to genetic variation affecting fetal globin expression, display hallmarks of an erythroid enhancer in cell lines and transgenic mice. As such, this enhancer is a novel, attractive target for therapeutic gene editing. To explore the roles of such sequences in vivo, we generated mice in which the orthologous 10-kb intronic sequences were removed. Bcl11a enhancer-deleted mice, Bcl11a(Δenh), phenocopy the BCL11A-null state with respect to alterations of globin expression, yet are viable and exhibit no observable blood, brain, or other abnormalities. These preclinical findings provide strong in vivo support for genetic modification of the enhancer for therapy of hemoglobin disorders.


Assuntos
Proteínas de Transporte/metabolismo , Elementos Facilitadores Genéticos/genética , Células Eritroides/metabolismo , Proteínas Nucleares/metabolismo , Animais , Sequência de Bases , Compartimento Celular , Proteínas de Ligação a DNA , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Inativação Gênica , Humanos , Camundongos , Camundongos Transgênicos , Proteínas Repressoras
7.
Cell Rep ; 15(5): 999-1012, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27117402

RESUMO

The molecular linkage between neocortical projection neuron subtype and area development, which enables the establishment of functional areas by projection neuron populations appropriate for specific sensory and motor functions, is poorly understood. Here, we report that Ctip1 controls precision of neocortical development by regulating subtype identity in deep-layer projection neurons. Ctip1 is expressed by postmitotic callosal and corticothalamic projection neurons but is excluded over embryonic development from corticospinal motor neurons, which instead express its close relative, Ctip2. Loss of Ctip1 function results in a striking bias in favor of subcerebral projection neuron development in sensory cortex at the expense of corticothalamic and deep-layer callosal development, while misexpression of Ctip1 in vivo represses subcerebral gene expression and projections. As we report in a paired paper, Ctip1 also controls acquisition of sensory area identity. Therefore, Ctip1 couples subtype and area specification, enabling specific functional areas to organize precise ratios of appropriate output projections.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Córtex Cerebral/citologia , Neurônios/citologia , Neurônios/metabolismo , Animais , Orientação de Axônios , Axônios/metabolismo , Movimento Celular , Feminino , Proteínas de Homeodomínio/metabolismo , Integrases/metabolismo , Camundongos , Mitose , Mutação/genética , Neurogênese , Medula Espinal/citologia , Tálamo/citologia , Fatores de Transcrição/metabolismo
8.
Neuron ; 90(2): 261-77, 2016 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-27100196

RESUMO

While transcriptional controls over the size and relative position of cortical areas have been identified, less is known about regulators that direct acquisition of area-specific characteristics. Here, we report that the transcription factor Ctip1 functions in primary sensory areas to repress motor and activate sensory programs of gene expression, enabling establishment of sharp molecular boundaries defining functional areas. In Ctip1 mutants, abnormal gene expression leads to aberrantly motorized corticocortical and corticofugal output connectivity. Ctip1 critically regulates differentiation of layer IV neurons, and selective loss of Ctip1 in cortex deprives thalamocortical axons of their receptive "sensory field" in layer IV, which normally provides a tangentially and radially defined compartment of dedicated synaptic territory. Therefore, although thalamocortical axons invade appropriate cortical regions, they are unable to organize into properly configured sensory maps. Together, these data identify Ctip1 as a critical control over sensory area development.


Assuntos
Proteínas de Transporte/fisiologia , Neocórtex/crescimento & desenvolvimento , Neocórtex/fisiologia , Proteínas Nucleares/fisiologia , Tálamo/fisiologia , Animais , Axônios/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Proteínas de Ligação a DNA , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Knockout , Mutação , Neocórtex/citologia , Neurônios/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Repressoras , Transdução de Sinais/fisiologia , Tálamo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...